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ABSTRACT

Previous designs for CQ filters have
required matrix rotation operations on the
coupling matrix of the canonic form of the
cross-coupled filters. This 1s a rather
awkward and not entirely satisfactory
process since the theory is not general,
requiring the application of egquations
specific to each order of filter, and in
fact has been developed only as far as
even order 10. A new direct CQ synthesis
has now been discovered having no such
limitations.

INTRODUCTION

A CQ falter consists of cascaded groups of
4 cavities or nodes, each with one cross

coupling. This 1s 1llustrated by the 8th-
order coupling diagram of Fig. 1, which
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Fig. 1 Coupling diagram of an eighth
order CQ filter

contains two CQ sections separated by onhe
normal main coupling, Mys . Restrictions on
the form of transfer function for this
type of network are well documented, e.g.
{1]. In particular the transmission 2zZeros
must be on eirther the real or 1maginary
axes, and no complex transmission 2zeros
are allowed. The CQ structure has the
advantage that each CQ section 1s entirely
responsible for producihg one transmission
zero. This 1s not the case for other
realizations such as the canonic structure
where each cross coupling affects all the
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transmission zeros, making the filter more
difficult to tune. The simpler tunability
of CQ filters makes them attractive for
commercial applications where cost 1is a
prime considerationmn.

Previously the only known method for
designing CQ filters has been by applying
matrix rotations to the canonic form of
the network for which synthesis techniques
exist [11. A method for extracting CQ
sections directly from the transfer
function has now been formulated as
described 1in the following sections.

DIRECT CQ SYNTHESIS

Initially the extraction of a CQ section
from a low pass transfer funcion would
seem to be an impossible task because the
CQ section is of such high degree and
contains several independent parameters.
Bach of the nodes shown in the example of
Fig. 1 has a capacitor to ground as well
as main line and possibly cross couplings.
However actually a shunt capacitor may be
extracted, and the remaining portion of
the CQ section is shown in Fig. 2. The
capacitor at node 4 may be disregarded,
being extracted after the CQ portion has
been dealt with.

Fig. 2 Partial CQ section equivalent to a
Brune or C section
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In Fi1g. 2 the lines joining the nodes are
admittance invertersg, and 1nverters J
and Jg4 may be set to unity admittance
without loss of generality. The transfer
matrix of this partial CQ section may be
derived as

‘ : 2
1/(1-J14923) | €a/J33 3(CpC35%/I33-933)

1- w202y {09,%c0002
............. (1)
where
wol = J14CC3/[(I14753-1)0,5] (2)

This 18 a matrix of degree 2 1n . The
proof that 1t 1s extractable from the
overall transfer matrix of the network
follows from the fact that apart from a
trivial rotation of the matrix parameters
due to having an odd number of admittance
inverters 1in the main path and also the
inclusion of an i1deal transformer, matrix
(1) 1is exactly that for either a Brune

section or C-section, e.qg. {21].

Appropriate extraction techniques for such
sections are well known, and in fact
necessary and sufficient conditions which
guarantee that such extractions are always
possible have been published [2]. The
extraction process for CQ sections using
matrix (1) need not be detalled here since
an alternative procedure which requires no
new synthesis programming has been
obtained, as described below.

DERIVATION OF CQ FILTERS FROM LOWPASS
FILTERS ~ A NEW NETWORK TRANSFORMATION.

In the previous section the existence of a
general CQ synthesis was demonstrated.
However rather than havaing to write a
special synthesis program, 1t has been
convenient to transform simple cascaded
lowpass filters of defined topology into
CQ form using an 1nteresting circuit
transformation. As an example, the form of
circult to be transformed 1is shown in Faig.
3(a) for the 8th degree case. This has a
4th ordered attenuation pole at infinity
and a pair of second degree finite poles,
giving total degree 8. The synthesis of
this filter was performed using an
exlsting program for the synthesis of
generalized lowpass filters, but may be
carried out also using the commercilally
available program FILSYN [3].

The first step in the transformation of
this circuit into a CQ filter 1is to
replace each simple series 1nductor by a
cascade of a shunt capacitor ilanked on
each side by admittance inverters, as
shown in Fig. 3(b). At this stage it 1is
convenient also to 1ncorporate the non-
unity terminating resistance into one of
the inverters.

Less obvious 1s the fact that a similar
operation may be performed in the case of
the inductors within the pole sections as
shown in Fig. 3(c). Here we make use of
the i1dentity

1 43 fo 53771 o0o'ho -3
po= li‘ . (3)
Lo 1] 3 0, 1i3C 1 -3 0
where
C = L (4)

(The exact equality of (4) would be modi-
fied by a factor J 1f the 1mmittance
inverters were of %gmlttance J rather than
unity, 1.e. C = J%L, giving the correct
dimensional relationship).

It 1s very important to have one of the
inverters i1n (3) have negative admittance
to avoid a 1:-1 transformer. In the case
of the single series inductors of step (a)
to (b) such transformers are of no conse-
quence since they do not affect the ampli-
tude of the transfer function.

The circult section between nodes 1 and 4
of Fig. 3(c¢) has the admittance matrax

Cis  ~dpg 0 o |
-J1p (Co+Cohy)s -1 -Coys (5)
0 -1 Cys 1 !

0 ~Coy4s 1 (C24+C4)S

where the complex frequency variable s 1is
used rather than Jw.

In order to eliminate the 24 coupling row
2 1s multiplied by C 4/(C2+C24) and added
to row 4, and a s1m1iar operation applied
to columns 2 and 4. The J entries are
made unity by multiplying row 2 and column
2 by 1/J12, giving the eguivalent
admittance matrix
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Fig. 3(a) Lowpass prototype filter

Fig. 3(b)

First stage of transformation

Fig. 3(4)

Final conversion 1into CQ format:

. 2
=Cy Co' = (Cy + Cpy)/Jyg

[(Cy + Cpy)/Co12. Oy (Cy = L)
= Cy + G0/ (Cy + Coy)

= (Cp + Cpq)/(Colpp) Jig' = ~CpgJqp/1Cy + Coy)
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— _ Note that if C is ositiv
-1 a Coysd 3 24 p e
Cls 24712 corresponding to an attenuation pole, theﬁ
VTEWRT_T the 14 term correctly represents a
2724 t i dmsi ; ;
negative admittance inverter, whereas if
C is negative, corresponding to 1
1 5 , P g a rea
n (Ca¥Cpyls 0 axls pole, then the cross coupling
,,,,,, P 3 inverter is positive.
12 12
1 c The transformation is applied to each
o Cus 1- 24 pole-producing section of the original
7T 3 (5¢:C 4) lowpass‘filter, e.g. to nodes numbered 5,6
12 27~z and 8 in Fig. 3(b), resulting in the
complete CQ filter.
Caed12 Cog €2C24
S B Y 47 The element values have b
coiea ' e been compared to
(CotCpy) (Ca+Cpq) (C2*Coq! B those obtained using matrix rotations,
............. (6) with identical results. The theory has

been checked also by direct analysis of
the derived CQ networks.

The process of making the off-diagonal
elements 12 and 34 equal to -1 1is
completed by multiplying row and column 3
by the factor (Cy+Cyy)/Cy. The 34 terms
could be transformeé to unity only by

introducing a multiplication factor to row REFERENCES

and column 4 which would change the admit-

tance looking to the right, and it is (1] R. J. Cameron and J. D. Rhodes,

simpler not to carry this out. "Asymmetric Realizations for Dual-Mode
Bandpass Filters," IEEE Trans. on

The final step is the necessary and rather Microwave Theory and Technigques, vol. MTT-

interesting one of multiplying row and 29, pp. 51-58, January 1981.

column 4 by -1, which gives the 34 terms

the correct negative sign and also changes (23 J. 0. Scanlan and J. D. Rhodes,

the sign of the 14 terms. The final matrix Unified Theory of Cascade Synthesis,

is given below, and the resulting CQ Proc. IEE (London), vol. 117, pp. 665-670,

section shown in Fig. 3(d). April 1970

{3] "Super Filsyn"” Available from DGS
Assocliates, Menlo Park, CA

ClS -1 0 C24J12
(Cp+Coq)
. .
J12 J12C2
—(C2+C24) (C2+C24)2 ]
0 e T . 38 -1
J12C2 €y
Coyad CC
4912 2C24
2 0 -1 +N__“,2
f{ca+cay) (Ca+Caq) |
............... (7)
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