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DIRECT SYNTHESIS OF CASCADED QUADRUPLET (CQ) FILTERS
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ABSTRACT

Previous designs for CQ filters

Ralph Levy

Levy Associates
Velasco, La Jolla, CA 92037

have
required matrix-rotation operations on the
coupling matrix of the canonlc form of the
cross-coupled filters. This 1s a rather
awkward and not entirely satisfactory
process since the theory is not general,
requiring the application of equations
specific to each order of filter, and in
fact has been developed only as far as
even order 10. A new direct CQ synthesis
has now been discovered having no such
limitations .

INTRODUCTION

A CQ filter consists of cascaded groups of
4 cavities or nodes, each with one cross
coupllng. This 1s Illustrated by the 8th-
order coupling diagram of Fig. 1, which
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transmission zeros, making the filter more
difficult to tune. The simpler tunability
of CQ filters makes them attractive fOr
commercial applications where cost is a
prime consideration.

Previously the only known method for
deslgnlng CQ filters has been by applying
matrix rotations to the canonic form of
the network for which synthesis techniques
exist [1]. A method for extracting CQ m
sections directly from the transfer
function has now been formulated as
described in the followlng sections.

DIRECT CQ SYNTHESIS

Inltlally the extraction of a CQ section
from a low pass transfer funcion would
seem to be an impossible task because the
CQ section is of such high degree and
contains several independent parameters.
Each of the nodes shown in the example of
Fig. 1 has a capacitor to ground as well
as main line and possibly cross couplings.
However actually a shunt capacitor may be
extracted, and the remaining portion of
the CQ section is shown in F19. 2. The
capacitor at node 4 may be disregarded,
being extracted after the CQ PortIon has
been dealt with.

Fig. 1 Coupllng diagram of an eighth
order CQ filter

conta:.ns two CQ Sections separated by one
normal main couPllng, M45. Restrlctlons on
the form of transfer function for this
type of network are well documented, e.9.
[11. In Particular the transmission zeros
must be on either the real or lmaglnary
axes, and no complex transmission zeros
are allowed. The CQ structure has the
advanta9e that each CQ Section 1S entlrelY
responsible for producing one transmlSslon FIu. 2 Partial CQ Section MIulvalent to a
zero. This lS not the case for other Brune or C section

realizations such as the canonlc structure
where each cross roupling affects all the
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In Fig. 2 the llnes jolnlng the nodes are
admittance lnverters, and lnverters 312
and J34 may be set to unity admittance
without loss of generality. The transfer
matrix of this partial CQ section may be
derived as

l/(1-J14J23) rC2cs/J23
1j(C2C3~2/J23-J23)

I i

1- c42/cJo2)

[

J[J~42C2C3ti2

-(J14J23-1)21/J23
1

C3G/J23

. . . . . . . . . . . . . (1)

where

2 = J1~c2c3/[(J14J23
~o ‘l)J231 (2)

This 1s a matrix of degree 2 lncd . The
proof that It I.S extractable from the
overall transfer matrix of the network
follows from the fact that apart from a
trlvlal rotation of the matrix parameters
due to having an odd number of admittance
lnverters in the main path and also the
inclusion of an Ideal transformer, matrix
(1) is exactly that for either a Brune
section or C–section, e.g. [21.

Appropriate extraction techniques for such
sections are well known, and in fact
necessary and sufficient conditions which
guarantee that such extractions are always
possible have been publlshed [21. The
extraction process for CQ sections using
matrix (1) need not be detailed here since
an alternative procedure which requ~res no
new synthesis programming has been
obtained, as described below.

DERIVATION OF CQ FILTERS FROM LOWPASS
FILTERS - A NEW NETWORK TRANSFORMATION.

In the previous section the existence of a
general CQ synthesis was demonstrated.
However rather than having to write a
special synthesis program, It has been
convenient to transform simple cascaded
lowpass filters of defined topology into
CQ form using an Interesting clrcult
transformation. As an example, the form of
clrcult to be transformed IS shown in Fig.
3(a) for the 8th degree case. This has a
4th ordered attenuation pole at Inflnlty
and a pair of second degree f~nlte poles,
giving total degree 8. The synthesis of
this filter was performed using an
exlstlng program for the synthesis of
generalized lowpass filters, but may be
carried out also us~ng the commercially
available program FILSYN [3].

The first step in the transformation of
this circuit into a CQ filter IS to
replace each simple series Inductor by a
cascade of a shunt capacitor ilanked on
each side by admittance lnverters, as
shown in Fig. 3(b). At this stage It lS
convenient aiso to incorporate the non–
unity terminating resistance into one of
the inverters.

Less obvious lS the fact that a slmllar
operation may be performed in the case of
the inductors within the pole sections as
shown in Fig. 3(c). Here we make use of
the identity

(3)

where
C=L (4)

(The exact equalltY ~f (4) wouid be modl-
fled by a factor J If the lmmlttance
lnverters were of
unity, l,e.

c . J~dplttance J rather than
glvlng the correct

dimensional relatlons~lp).

It IS very important to have one of the
Inverters in (3) have negative admittance
to avoid a 1:-1 transformer. In the case
of the single series inductors of step (a)
to (b) such transformers are of no conse–
quence since they do not affect the ampll–
tude of the transfer function.

The clrcult section between nodes 1 and 4
of Fig. 3(c) has the admittance matrix

!
Cls

-J12

o

0

-312 0
10!

(C2+C24)S ‘1 ‘C24S
(5)

-1 c~s 1

–C24S 1 (C24+C4)S

where the complex frequency variable s lS
used rather than I@.

In order to ellmlnate the 24 coupllng row
2 lS multiplied by C ~/(C2+C24) and added
to row 4, 3and a slml ar operation applled
to columns 2 and 4. The 312 entries are
made unity by multiplying row 2 and column
2 by l/J12, glvlng the equivalent
admittance matrix
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Fig. 3(a) Lowpass prototype filter
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Fig. 3(b) First
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Fig. 3(c) Second stage of transformation
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Fig. 3(d) Final conversion Into CQ format:

c1 ‘ = c1 C*‘ = (C2 + C24)/J122

C3 ‘ = [(C2 + C24)/C212. C3 (C3 = L3)

e4f = C4 + C2C24/(c2 + C24)

’23’ = (C2 + C.24)/(C2J~2) J14’ = ‘C24J~2/
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c~s -1 0 -C24J12

---------1
(C2+C24)

-1

0

-C24J12

[Z2+C24)

-. ~-
J12

-1
___..-
J12

0

(C.2+C24)S ‘1
o—. I

J12 I
C24

c~s 1-
(C2+C24)

C24

‘--”-”---1

C2C24 ~
1-.. ..........- C4+(.C2;-2.;)

(C2+C24)

. . . . . . . . . . . . . . . . (6)

The process of making the off-diagonal
elements 12 and 34 equal to -1 is
completed by multiplying row and column 3
by the factor (C2+C2 )/Cz. The 34 terms
could be transforme~to unity only by
introducing a multiplication factor to row
and column 4 which would change the admit-
tance looking to the right, and it is
simpler not to carry this out.

The final step is the necessary and rather
interesting one of multiplying row and
column 4 by –1, which gives the 34 terms
the correct negat~ve sign and also changes
the sign of the 14 terms. The final matrix
is qiven below, and the resulting CQ
sect-ionshown in Fig. 3(d).

r
Cls

-1

I

-.1 0 C24J12

(C2+C24)~

C2+C24)S -(c2+c~4
-. =-- . d

J12 J12C2 I

(C2+C24 2
C2+C24) -_2_...C3S -1

.-jl.2.c2.
C2

!

I C24’J12 C2C24 !
,.. 0 -1 c4+ . . . ..-.)i Si
~(C2+C~4) (C2+C24

Note that if Co. is positive.
corresponding to an a<t=enuation~ole, then
the 14 term correctly represents a
negative admittance inverter, whereas if
C24 is negative, corresponding to a real
axis pole, then the cross coupling
inverter is positive.

The transformation is applied to each
pole–producing section of the original
lowpass filter, e.g. to nodes numbered 5,6
and 8 in Fig. 3(b), resulting in the
complete CQ filter.

The element values have been
those obtained using matrix
with identical results. The
been checked also by direct
the derived CQ networks.
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